
Jitter-Aware Packet Scheduler for
Concurrent Multipath Transmission in

Heterogeneous Wireless Networks
Min-Cheng Chan, Chien-Chao Tseng and Li-Hsing Yen

Institute of Computer Science and Engineering,
National Chiao Tung University, Taiwan, R.O.C.

mcjan@cs.nctu.edu.tw, cctseng@cs.nctu.edu.tw, lhyen@cs.nctu.edu.tw

Abstract—Mobile devices equipped with multiple network inter-
faces have the potential to increase transmission throughput by
exploiting concurrent multipath transmission (CMT). However,
packet scheduling for CMT is challenging since the diversity
of latencies among transmission paths can easily yield out-of-
order packet receptions and cause receiver buffer blocking if the
receiver buffer is not large enough. Previous studies proposed
several solutions attempting to eliminate out-of-order receptions
and receiver buffer blocking. Delay-Aware Packet scheduling
(DAPS) is the only one among them that considers delay diversity
at the sender side when scheduling packets. However, DAPS
assumes quasi-static path delay and thus does not perform well
if path delay changes dynamically. In this paper, we analyze how
jitter affects the performance of DAPS. Furthermore, we propose
and implement a jitter-aware packet scheduler named JAPS.
Performance evaluations show that JAPS outperforms existing
algorithms in terms of throughput under different settings of data
volume, receiver buffer size, network jitter and bandwidth ratio.

Index Terms—Concurrent multipath transmission, scheduling
algorithm, heterogeneous wireless networks.

I. INTRODUCTION

As wireless communication technologies continue to ad-
vance, more and more people rely on their mobile devices to
access online services. Modern mobile devices such as smart
phones are equipped with multiple network interfaces that allow
them to access the Internet through heterogeneous wireless
networks. This ability also motivates the study of using multiple
heterogeneous networks concurrently to provide larger trans-
mission throughput. For example, Multipath TCP (MPTCP) [1]
is an extension of TCP that supports multipath transmission and
multihoming. CMT-SCTP [2], a multihoming-capable Stream
Control Transport Protocol (SCTP) [3], is another approach
that supports concurrent multipath transmission.

The main challenge of concurrent multipath transmission is
that, if we transmit data concurrently over multiple heteroge-
neous links using simple scheduling algorithm such as Round-
robin, the asymmetry of delay and bandwidth may result in out-
of-order receptions. Due to limited memory and receiver buffer
in mobile devices, out-of-order receptions may further causes
receiver buffer blocking [4]. Kuhn et al. [5] analyzed the receive
buffer blocking problem and concluded that with simple Round-
robin scheduling algorithm the maximum blocking time would

Chien-Chao Tseng is the corresponding author of this paper.

increases as the diversity of link delay and bandwidth increase.
As a consequence of out-of-order receptions, the transmission
throughput may severely degrade, even worse than that of using
a single path.

Some previous approaches to this problem manipulate re-
ceiver buffer, such as increasing buffer size [6] or splitting the
buffer [7]. Other prior researches used specific retransmission
policy [8]–[10] to reduce the chance of receiver buffer blocking.
However, the above-mentioned solutions did not take the root
cause (i.e. the diversity of links) into consideration.

DAPS [5] uses a more proactive approach at the sender
side, which estimates the round trip time (RTT) of each
available link and predicts the arrival sequence when scheduling
packets over available paths. However, DAPS is based on an
accurate delay estimation, which is challenging when being
used in networks with high jitter such as heterogeneous wireless
networks since unexpected delay bursts will lead to under-
estimation of network delay.

Jitter-aware Packet Scheduler (JAPS), a simple but effective
mechanism is proposed in this paper to remedy the effect
of out-of-order receptions due to delay bursts. When delay
bursts are detected at the sender side, JAPS immediately
retransmits delayed packets through the fast path in order
to let the duplicated packet arrives earlier than the original
one. However, since retransmission shares the same bandwidth
resource with normal data traffic, scheduling retransmission
becomes a critical problem.

We also implemented a prototype of JAPS and evaluated
the performance in terms of throughputs under different data
volumes, receiver buffer sizes, network jitters and bandwidth
ratios. The evaluation result shows that JAPS outperforms
DAPS and Round-robin when used in a network environment
with high jitter.

The rest of the paper is organized as follows. Section
II introduces prior works that try to solve problems caused
by link asymmetry. Section III analyzes the effect of jitter
under the constraint of only two paths and introduces the
proposed algorithm: JAPS. Section IV elaborates more about
implementation details of JAPS. Section V further extends the
result in section III to three or more paths. Section VI evaluates
the performance enhancement provided by JAPS. Finally, We

conclude this paper and propose future work in Section VII.

II. RELATED WORKS

Round-robin is the most primitive scheduling algorithm for
CMT. The Round-robin scheduler simply loops over paths,
sends as much data as allowed, and repeats for the next path.
However, among paths with different delays, packets sent in
order will not arrive in order. To offer an ordered delivery
service to upper layer, the receiver should use a buffer to hold
packets for which preceding packets are not yet received. If the
receiver’s buffer is not large enough, it may be full of packets
and prevents the receiver from accepting subsequent packets.
This effect is named Receiving Buffer Blocking [4]. Several
previous works that aim at solving Receiving Buffer Blocking
have been proposed and can be classified into the following
three approaches.

A. Buffer Size Adjustment

Ideally, if the receiving buffer size is large enough, there
should be no receiving buffer blocking. However, to eliminate
all possible buffer blocking in multipath transmission, the buffer
should be at least

∑
iBi ×max(RTTi) where Bi and RTTi

are bandwidth and round-trip-time of path Pi. For example, in
a scenario of two paths with 10 and 1 Mbps capacity, and 20
and 200 ms RTT, respectively, the required minimum buffer
size would be 275 kB per connection to prevent blocking [5].
This requirement is not practical for common mobile devices.
Raiciu et al. [6] adapts the receive buffer size according to the
highest RTT of all available paths. Adhari et al. [7] dedicates
portion of receive buffer to specific paths. Halepoto et al. [11]
grants more buffer space to link with shorter RTT at the receiver
side.

Buffer management techniques provide lower chance of re-
ceiver buffer blocking. However, the root cause of out-of-order
reception, i.e. the diversity of latencies among heterogeneous
wireless links, is not addressed.

B. Retransmission Policy

Iyengar et al. [8] identified spurious retransmission when
using CMT and tried to use different retransmission policies
to eliminate the problem. They concluded that policies consid-
ering loss rates, slow start thresholds and congestion windows
outperform the others.

Liu et al. [9] and Qiao et al. [10] also tried to eliminate
the receiver buffer blocking by using specific retransmission
methods based on receiver buffer sizes and path conditions.
However, these works also did not consider the latency differ-
ence when scheduling the transmission.

C. Delay-aware Scheduling

Traditional Round-robin scheduler dispatches packets to
available paths in circular order. Delay-aware Packet Schedul-
ing (DAPS) [5] takes the network latency into consideration at
the sender side. DAPS dispatches packets to schedules instead
of paths in circular order, where a schedule Sj is composed of
a transmission sequence number TSNj and a path Pj through

TC TDTE

TF TR TODF

DS

∆DS

Sender
Time

Receiver
Time

T_DetectT_EffectT_Change

T_AF

CB

T_AR T_AO

TG

Fig. 1. Transmission Sequence.

which the packet with sequence number TSNj is scheduled to
be transmitted. The packet is transmitted only when it is Sj’s
turn.

The performance of DAPS depends on the quality of the
schedule calculation. When the sender wants to transmit a
bunch of data over two transmission paths, DAPS divides the
data into two parts, one for each path. The division ratio is
based on the ratio of estimated RTTs and the number of empty
slots in congestion window in these two paths. With an accurate
estimation of RTTs, DAPS could provide in order delivery and
thus a significantly higher transmission throughput compared
with Round-robin. Inaccurate delay estimation or unexpected
delay bursts will result in out-of-order receptions and thus
degrade the performance of DAPS. Therefore, the performance
of DAPS suffers in environments with high jitters such as
heterogeneous wireless networks.

III. PROPOSED ALGORITHM

In this paper, we propose Jitter-Aware Packet Scheduler
(JAPS). The main concept of JAPS is detecting and reacting to
delay bursts by fast retransmitting the affected packets through
the fast path so that the delayed packets could possibly arrive
earlier.

However, the retransmission consumes extra bandwidth re-
source and interferes with the ongoing transmission schedule
of the fast path. Therefore, calculating the retransmission data
volume and rescheduling the ongoing and the retransmission
data are necessary.

Without loss of generality, we have made the following
assumptions to simplify the explanation of JAPS:
• There are only two transmission paths: fast path (PF) and

slow path (PS). We will show how to extend the result to
three or more paths in Sec. V.

• One-way end-to-end latency is a half of the round-trip
time.

• There is no lost packet. Packets that fail in transmissions
are automatically retransmitted by underlying TCP and
eventually delivered to the receiver. To JAPS, the effect
of transmission failure is the increased packet delay.

Figure 1 shows the transmission sequence in a delay burst
scenario. DF and DS are the estimated delays of path PF and
PS respectively. ∆DS is the difference between the estimated

and actual delays of PS . Assume that ∆DS is significantly large
at time TC , at which a packet is sent to the receiver through PS .
The sender realizes that after it receives the acknowledgment of
the delayed packet at time TD. Suppose that the traffic condition
on PF is quasi-static. The sender wants to compensate the
unexpected extra delay by finding out all affected packets that
were sent on PS after TC and retransmitting them on PF .

A. Identify packets that can benefit from early retransmission

The first problem is to find out all affected packets that can
benefit from the retransmission. Suppose that a packet that is
sent through PF at TD will arrive at time TF , and TF will
also be the arrival time of a packet that was previously sent
through PS at time TE . This implies that all packets sent
through PS earlier than TE will already reach the receiver at
time TF . Therefore, these packets need not be retransmitted.
Only those packets that were sent on PS after TE (more
explicitly, during the period [TE , TD]) can possibly benefit from
the retransmission: if we retransmit these packets on PF , they
can arrive at the receiver earlier than their original copies sent
on PS .

B. Determine the amount of transmittable data

The retransmitted data must be intermixed with the scheduled
data, sharing the same bandwidth resource of the fast path. This
causes extra transmission delay and may neutralize the benefit
of retransmission. Therefore, although all data transmitted on
PS during the period [TE , TD] can possibly benefit from
retransmission, not all of them will be retransmitted considering
the extra transmission time. We determine the amount of data
to be retransmitted in this subsection.

The last packet that can possibly benefit from the retrans-
mission is the one that is sent on PS right before TD. Let us
refer to this packet as ρS and assume that ρS is sent at TD for
simplicity. If ρS is not retransmitted, ρS will reach the receiver
at time TO, where

TO = TD +DS + ∆DS . (1)

Now consider the first packet that were supposed to be sent on
PF right after TD. Let us refer to this packet as ρF . If there is
no extra transmission delay caused by packet retransmission,
ρF will reach the receiver at time TF , where

TF = TD +DF . (2)

If we retransmit packets, ρS can now reach the receiver
(through PF) earlier than its original copy sent on PS . Let the
arrival time be T ′O with T ′O < TO. On the other hand, ρF will
be delayed by the retransmissions. Let the arrival time of ρF be
T ′F with T ′F > TF . Now considering the retransmission, as we
increase the volume of retransmission data, T ′O will decrease
but T ′F will increase. Therefore, the goal of the retransmission is
to minimize max(T ′F , T

′
O), meaning that we want to minimize

the time difference between the arrival of the last packet that is
not retransmitted and that of the last packet that is retransmitted.

Let TR denote the optimal result that is obtained by setting
T ′F = T ′O. If TR is the arrival time of the last retransmitted

packet, total (TO − TR) time is saved for the packet compared
with the case of no retransmission at all. Let Srtx be the amount
of data that should to be retransmitted on PF to let the last
retransmitted packet reach the receiver at time TR. Srtx is equal
to the bandwidth of PS multiplied by the amount of time saved
by the retransmission, i.e.,

Srtx = BS × (TO − TR). (3)

For the data transmitted through slow path at TG, its
subsequent data scheduled to the fast path is expected to be
transmitted at TD such that they can arrive at the same time
(TF). The size of these packets that are scheduled to be sent
through the fast path at TD is

Stx = BF × (DS −DF). (4)

The elapsed time (TR − TD) includes the propagation delay
on the fast path DF , the time required to transmit the packets
already scheduled to be sent on the fast path Ttx and the time
required to retransmit the delayed packets sent on the slow path
Trtx.

TR − TD = DF + Ttx + Trtx

= DF +
Stx

BF
+
Srtx

BF

= DF + (DS −DF) + (TO − TR)× BS

BF

= DS + (TO − TR)× BS

BF

(5)

⇒ TR = TD +DS + (TO − TR)× BS

BF
. (6)

The time saved by retransmitting delayed packets through
fast path:

Saved Time = TO − TR

= (TD + DS + ∆DS)− TR

= (TD + DS + ∆DS)− (TD + DS + (TO − TR)×
BS

BF
)

= ∆DS − (TO − TR)×
BS

BF
(7)

Moving (TO − TR) to the same side, we can derive:

TO − TR = ∆DS ×
BF

BS +BF
. (8)

To summarize, the most effective fast retransmission policy
would be: Upon detection of delay burst at time TD,
immediately retransmit the data sent through the delayed
path at time TE along with the following Srtx bytes through
PF , where

Srtx = BS × (∆DS ×
BF

BS +BF
). (9)

p2

p1

pn

…

b1

b3

b2

bn…

Data from
Upper Layer

0

p3

To path Pn

To path P3

To path P2

To path P1

Fig. 2. Sender Queue.

IV. IMPLEMENTATION DETAILS

In this section, we explain the implementation details of
JAPS. Additionally, we prove that with proper management,
the data put in the queue in order will arrive at the receiver in
order.

JAPS is built on top of existing TCP protocol stack and
utilizes TCP connections without interfering with the trans-
mission mechanism of TCP. As a sender, JAPS maintains a
sender queue on top of multiple available TCP connections.
Data from upper layer are enqueued first and dispatched to
different TCP connections according to a specific algorithm
that will be detailed later in this section. As a receiver, JAPS
maintains a receiver buffer also on top of multiple available
TCP connections. Data received from the network are reordered
in the receiver buffer and delivered to upper-layer applications.

In our current implementation, all packet losses are handled
by underlying TCP. At the viewpoint of JAPS, packet losses
are considered as a delay burst and will trigger corresponding
fast retransmission algorithm as normal delay burst does. Con-
sidering the interaction between JAPS and existing transport
protocol (e.g. TCP) may further improve the performance of
JAPS, which remains to be our future work.

A. Design of the Sender Queue

Figure 2 illustrates the sender queue. The bottom of the figure
shows the head of the queue, which is indexed by zero. The
top of the figure is the tail of the queue, from which the upper
layer data comes. There is also one pointer for each available
path. Note that the paths are sorted according to its latency in
an ascending order. That is,

∀i < j,Di < Dj . (10)

The queue is specially designed to allow insertion or removal
of data to/from any location simultaneously. p1 to pn are
pointers of paths P1 to Pn respectively. These pointers split
the data in queue into several blocks, denoted by b1 to bn.
Whenever a path is able to transmit data, it transmits the packets
in the corresponding data block. After a packet is successfully
delivered and dequeued, all packets waiting for transmission in
the queue that are located above the delivered packet will shift

downward. As a result, packets do not always stay in the same
block. A packet in b2 may belong to b3 earlier.

B. Transmission Rate of Each Block

We can regard the speed of packet shifting in a block as
the transmission rate of the block. Only P1 can transmit data
in block b1. Therefore, the transmission rate of b1, denoted by
R1, would be B1 (the bandwidth of P1). For block bk, the
transmission rate would be

Rk =

k∑
i=1

Bi. (11)

C. Determine Location of Pointers

In this subsection, we discuss how to set the pointer of each
paths correctly so that data put in the sender queue in order
will arrive at the receiver in order.

The first observation is that every data in bf will normally
arrive earlier than any data in bs. That is

DF +
pS − pF − 1

RF
≤ DS . (12)

The second observation is that for data in the same block, a
packet with a smaller sequence number will normally arrive
at the receiver before any packet with a larger sequence
number. Consider two packets with sequence numbers TSNi

and TSNi+1, respectively. If these two packets are transmitted
through the same path, say, PS , the former will arrive earlier
than the latter simply because the former is transmitted earlier
than the latter. In case that the latter is sent through PF due to
a data shift, we would like to have the estimated arrival time
of the latter earlier than the former. That is,

DF +
pS − pF
RF

≤ DS . (13)

By (12) and (13), we can obtain the following result:

(DS −DF)×RF ≤ pS − pF < (DS −DF)×RF + 1 (14)

and calculates the value of pS

pS = d(DS −DF)×RF + pF e. (15)

JAPS recalibrates path pointers upon the detection of a
delay change on that path, i.e., reception of an ACK. The
recalibration ensures that all pending packets can still arrive
in order. For those packets that were already transmitted, the
fast retransmission mechanism mentioned in Section III can
remedy the effect.

V. EXTENSION TO THREE OR MORE PATHS

The calculation of retransmission data size mentioned in
Section III and the calculation of pointer location mentioned
in Section IV can be easily extended for three or more paths.

The generalized pointer location for path Pk can be derived
from (15).

pk = d
k−1∑
i=1

(Di+1 −Di)×R1e. (16)

TABLE I
EVALUATION PARAMETERS

Fast Path Latency 10 + 2 |G| ms
Fast Path Bandwidth 2100 Kbps
Slow Path Latency 50 + 100 |G| ms
Slow Path Bandwidth 220 Kbps
Data Chunk Size 8 KB
G Gaussian variable

The generalized retransmission data size of three or more
paths can be derived from (9). Let Pk be the path for which
a delay burst is detected. We can fast retransmit the delayed
packets using all other paths that has a lower latency.

Srtx = Bk ×

(
∆Dk ×

∑k−1
i=1 Bi

Bk +
∑k−1

i=1 Bi

)
. (17)

That is to replace BF in the original equation with the total
bandwidth of all paths that a has lower latency than Pk.

In the previous section, we already proved that once pointer
pi is correctly set according to the path delay, the data put in
the sender queue in order will arrive at the receiver in order. To
ensure that the retransmitted packets are delivered in order, we
need to merge packets to be retransmitted with packets already
in the sender queue according to their sequence numbers.

VI. PERFORMANCE EVALUATION

A. Environment

Several in-lab experiments have been conducted to evaluate
the throughput under various data volumes, receiver buffer
sizes, network jitters and bandwidth ratios.

For each experiment, we compare the performance of JAPS
with that of DAPS and Round-robin. To precisely control
the bandwidth and delay, we implemented a loopback socket
named DelaySocket. Instead of transmitting data through a real
network, the DelaySocket transmits the data to local receiver
according to pre-configured delay and bandwidth. Additionally,
since both sender and receiver is located in the same host, we
can easily measure the latency without worrying about time
synchronization.

Table I shows the detailed evaluation parameters. These
values are heuristically set according to the common bandwidth
and delay of WiFi and 3G network. The latency is the end-to-
end transport layer delay. We add a gaussian random variable to
model the jitter of the wireless networks to verify that JAPS has
better performance under high jitter environment. The gaussian
variable G is a standard normal distributed random variable
with zero mean and standard derivation equal to one.

All results shown in the rest of this section compare JAPS
with DAPS and Round-robin. The results are averaged over 20
trials.

B. Experiment 1: Transmission Throughput

In experiments 1 to 3, we fixed the receiver buffer to 4MB
and varied the transmitting data volume from 256 KB to 4 MB.
With this setting, the receiver buffer size was large enough

Fig. 3. Transmission Throughput.

to accommodate all the data being transmitted. Therefore,
receiver buffer blocking was impossible, which precludes the
possibility of packet drops or retransmissions due to buffer
blocking and allows us to focus on the effect of out-of-order
reception. The results of limited buffer size shall be shown
later in experiment 4. Figure 3 shows the result of transmission
throughput corresponding to different data volumes.

Round-robin scheduler provided only twice of the slow path’s
throughput regardless of the data volume. The reason is that all
packets transmitted through the fast path should wait for the
packets from the slow path. Therefore, the throughput provided
by fast path was dragged down to the same level as that
provided by the slow path.

DAPS scheduler provided much higher throughput than
Round-robin. We observed a throughput degradation when the
data volume was 512 KB. The reason is that DAPS uses only
the fast path to transmit when the data volume is too small
(less than 512 KB). When data volume is larger than 512 KB,
DAPS tries to increase the throughput by utilizing the slow
path. However, the unstable delay of the slow path resulted in
high prediction error of the path latency and thus slowed down
DAPS.

JAPS scheduler performed even better compared with DAPS
when the data volume was 512 KB, thanks to the fact that JAPS
adapted to the high jitter of the slow path.

C. Experiment 2: Reordering Latency

Reordering latency is defined as the duration during which
a packet stays in the receiver buffer waiting for preceding
packets to come. If the size of the receiver buffer is limited,
large reordering latency may cause receiver buffer blocking and
thus reduce the throughput. In this experiment, we also assume
that the receiver buffer is large enough (4 MB) so that we
can observe the reordering latency without the interference of
packet drops and retransmissions.

Figure 4 shows the result of reordering latencies correspond-
ing to different data volumes. As expected, the Round-robin
scheduler suffered from high reordering latency. For DAPS,
the reordering latency grew quickly when the data volume was

Fig. 4. Reordering Latency.

Fig. 5. Average Transmission Time.

set to 512 KB. The reason is exactly what has been mentioned
in experiment 1. For JAPS, we also observed an increasing
reordering latency when the data volume was set to 512 KB.
However, the reordering latency of JAPS is much smaller when
compared with DAPS.

From the results of these two experiments, we observed that
1) Throughput was significantly affected by out-of-order

receptions. We can expect an even lower throughput with
a smaller size buffer.

2) JAPS had the highest transmission throughput and
the lowest reordering latency among all schedulers.

D. Experiment 3: Average Transmission Time

We also measured packet transmission time in experiments 1
and 2. Figure 5 shows the average of the results with respect to
different data volume sizes. JAPS had the lowest transmission
time while Round-robin had the highest one in every setting.
This is because JAPS alleviates the effect of jitter and thus
reduce the transmission time.

E. Experiment 4: Transmission Throughput under Limited Re-
ceiver Buffer

We next confined the receiver buffer size and evaluated the
throughput of each scheduling algorithm. More explicitly, the

Fig. 6. Transmission Throughput under Limited Receiver Buffer.

Fig. 7. Transmission Throughput under High Jitter.

data volume was fixed to 4 MB while the size of receiving
buffer was varied from 256 KB to 2 MB.

Figure 6 shows the results. In every setting of the receiver
buffer size, the fast path was dragged down by the slow path
when using Round-robin and hence resulted in low throughput.
DAPS and JAPS predicted the time required for transmission
when scheduling packets and thus performed relatively well
even when the receiver buffer was set to a very small size.

F. Experiment 5: Transmission Throughput under High Jitter

In this experiment, we increased the standard derivation of
transmission delay and measured the throughput for both JAPS
and DAPS. Both data volumes and receiver buffer sizes were
fixed to 4 MB.

Figure 7 shows the experiment results. An increased jitter
causes a higher delay prediction error for both JAPS and DAPS.
Therefore, the throughput of both JAPS and DAPS decreased as
the variation of delay increased. However, since JAPS uses fast
retransmission when a delay burst is observed, the throughput
degradation of JAPS was milder than DAPS.

This result confirms that JAPS has the best anti-jitter
ability among all tested schedulers.

Fig. 8. Transmission Throughput with Different Bandwidth Ratios

G. Experiment 6: Transmission Throughput with Different
Bandwidth Ratios

In this experiment, we limited the total bandwidth to 2000
Kbps and changed the bandwidth ratios between the two paths
and observed the transmission throughputs. Figure 8 shows the
result. As expected, the performance of Round-robin scheduler
was acceptable only when these two paths equally shared the
bandwidth.

Unbalanced bandwidth had slight effect on the performance
of DAPS and JAPS. Despite a small throughput reduction on
the edge, both DAPS and JAPS outperformed Round-robin in
most cases.

For DAPS and JAPS, we also observed that the throughput
declined as we increased the bandwidth share of the slow path.
The reason is that when the slow path had a higher bandwidth,
more data were dispatched to the slow path. However, high
jitter in the slow path affected both DAPS and JAPS and thus
resulted throughput degradation. Fortunately, in the real world,
links with high latency are unlikely to have high bandwidth.
But even in that extreme case, JAPS still outperformed DAPS
due to its anti-jitter design.

VII. CONCLUSION AND FUTURE WORK

In this paper, we first explained the throughput degrada-
tion phenomenon which occurs when data are concurrently
transmitted through multiple paths. We then reviewed existing
scheduling algorithms for multipath transmission and identified
their limitation when used in a network with high jitter. A jitter-
aware packet scheduler, JAPS, was proposed to overcome the
effect of inaccurate delay estimation. JAPS uses a simply yet
effective method, that is, using the fast path to retransmit the
delayed packets when delay bursts are detected on the slow
path.

A prototype of JAPS was implemented for performance
evaluation. The performance evaluation result shows that JAPS
outperforms DAPS and Round-robin in terms of throughput
under different data volumes, receiver buffer sizes, network
jitters and bandwidth ratios.

The future work includes several possible improvements.
We will conduct more performance evaluations under more

scenarios. E.g. the bandwidth consumed by retransmission.
Furthermore, the current design of JAPS only reacts to delay
bursts at the sender side when the ACK of the delayed packet
is received. Several cross-layer approaches such as monitoring
and predicting the RSSI value of the mobile devices may help
JAPS react faster to the change of channel conditions. This can
be easily achieved with existing cross-layer network framework
such as CoLA [12].

VIII. ACKNOWLEDGMENT

This work was sponsored in part by Ministry of Science and
Technology, Taiwan, R.O.C., under grant number 101-2221-E-
009-031-MY3. The authors would also like to thank Mr. Wei-
Hsin Chang for his help on the implementation and evaluation
of this work.

REFERENCES

[1] Alan Ford et al., “TCP extensions for multipath operation with multiple
addresses,” RFC 6824, 2013.

[2] Janardhan R. Iyengar, Paul D. Amer, and Randall Stewart, “Concurrent
multipath transfer using SCTP multihoming over independent end-to-end
paths,” IEEE/ACM Transaction on Networking, vol. 14, no. 5, pp. 951–
964, 2006.

[3] Randall Stewart, “Stream control transmission protocol,” RFC 4960,
2007.

[4] Janardhan R. Iyengar, Paul D. Amer and Randall Stewart, “Receive
buffer blocking in concurrent multipath transfer,” in Proc. IEEE Global
Telecommunications Conference (GLOBECOM), 2005.

[5] Nicolas Kuhn et al., “DAPS: Intelligent delay-aware packet scheduling
for multipath transport,” in Proc. IEEE International Conference on
Communications, 2014, pp. 1228–1233.

[6] Costin Raiciu et al., “How hard can it be? Designing and implementing a
deployable multipath TCP,” in Proc. USENIX Symposium on Networked
Systems Design and Implementation, 2012.

[7] Hakim Adhari et al., “Evaluation of concurrent multipath transfer over
dissimilar paths,” in Proc. Workshops of International Conference on
Advanced Information Networking and Applications, 2011.

[8] Janardhan R. Iyengar, Paul D. Amer and Randall Stewart, “Retransmis-
sion policies for concurrent multipath transfer using SCTP multihoming,”
in Proc. IEEE International Conference on Networks, 2004.

[9] Jiemin Liu et al., “Rethinking retransmission policy in concurrent
multipath transfer,” in Proc. International Conference on Intelligent
Information Hiding and Multimedia Signal Processing, 2008.

[10] Yuansong Qiao et al., “Path selection of SCTP fast retransmission in
multi-homed wireless environments,” Wireless and Mobile Networking,
vol. 284, pp. 447–458, 2008.

[11] Imtiaz A. Halepoto et al., “Management of buffer space for the concurrent
multipath transfer over dissimilar paths,” in Proc. International Confer-
ence on Digital Information, Networking, and Wireless Communications,
2015.

[12] Min-Cheng Chan, Chien-Chao Tseng and Li-Hsing Yen, “A cross-layer
architecture for service continuity and multipath transmission in hetero-
geneous wireless networks,” in Proc. IEEE Wireless Communications and
Networking Conference, 2013.

