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Abstract

Detecting global predicates is an important task in test-
ing and debugging distributed programs. In this paper,
we propose an approach that effectively precludes useless
events for global predicate detection, facilitating the pro-
cess of an independent on-line checking routine. To identify
more useless events than a simple causality-check method
can do, our method tracks and maintains the precedence
information of event intervals as a graph. To reduce the
potentially expensive space and time cost as the graph ex-
pands, we propose an effective scheme to prune the graph.
The performance of our method is analyzed and evaluated
by simulations. The result shows that our approach outper-
forms conventional approaches in terms of the number of
useless events found.

1. Introduction

One important task in testing and debugging a distributed
program is to answer whether a given execution run of this
program fulfills a particular property. Such a property is of-
ten specified as a global predicate—a Boolean expression
whose value depends on the state of multiple processes and,
perhaps, communication channels. Detecting global pred-
icates involves identifying consistent global states [2],on
which predicates are to be evaluated. In general, the num-
ber of consistent global states is exponential in the num-
ber of processes [5]. Therefore an exhaustive search for all
system states, which is necessary for detecting a general-
form predicate, will suffer from the combinatorial explo-
sion problem. Many researchers circumvent this problem
by placing restriction on the types of predicates. In par-
ticular, they have considered global predicates that can be
logically decomposed into sub-expressions, each of which
is locally detectable by a single process [13, 11, 3, 8, 15, 9].
Such sub-predicates are called local predicates. Only lo-
cal states upon which local predicates are satisfied have to

be examined to see if any combination of them can form a
consistent global state. The number of states examined is
therefore reduced.

A typical procedure toward this kind of predicate de-
tection is as follows [3, 8, 9]. Consider a distributed sys-
tem that consists ofn processes, labeledP1; P2; : : : ; Pn.
All processes cooperatively maintain vector clocks [6, 12]
which are used to timestamp events. This timestamping
scheme possesses a desired property that for any two eventsa andb, we can determine ifa happens before[10] b (de-
noted bya ! b) by comparing their timestamps. Once an
event upon which a local predicate is evaluated astrue oc-
curs, the process sends in FIFO order the event’s identifica-
tion together with its timestamp to a dedicatedcheckerpro-
cess [8, 3]. The checker process maintainsn event queues,Q1; Q2; : : : ; Qn, where eachQi is for storing events fromPi. Events in each queue are arranged in the order as they
occurred: the head event ofQi is the earliest predicate event
among other events occurred inPi.

The checker process performs two routines. The first
routine examines if the event set comprising all current head
events in each queue is consistent. The technique used in
this routine is to repeatedly find two causally related head
events and remove the one that happened before the other
[7, 8]. Whenever no event queue is empty and the checker
cannot remove any head event, a consistent global predicate
is identified.

Events usually do not arrive at a constant rate, so it is
possible that some event queue grows lengthily while oth-
ers drain. If any event queue is empty, the first routine must
wait for all absent events before it can proceed. Checker’s
second routine identifies and removes all events currently
pending in queues that are evidently inconsistent with other
not yet arrived events. Precludinguseless eventsnot only
reduces space requirement on event queues, but also avoids
further process of these events by the first routine. This re-
moval does not impose additional computation overhead on
the checker process: while the first routine cannot progress,
the checker process can perform this routine rather than be-



ing idle. In this paper, we focus on the design of this routine.
Suppose thatk event queues are non-empty, each of

which hasm events. A naive approach might involve look-
ing at allmk possible sets consisting of one event from each
of the k event queues [4]. Chiou and Korfhage [4] pro-
posed an algorithm for finding removable events that has anO(k2m2) time complexity. Their method, however, cannot
identify all useless events. Although the necessary and suf-
ficient conditions for useless events have been formulated
[14, 1], as to the author’s knowledge, no practical algorithm
has been proposed. Our method exploits the result in [1],
which established the theory of event intervals, and treats
the problem of finding useless events as an on-line compu-
tation of a reachability matrix representing an event interval
graph. We prevent unlimited expansion of the matrix by cut-
ting down obsolete rows and columns, saving both memory
space and execution time. The validity proof of our method
is provided. The simulation result shows that our approach
outperforms conventional approaches in the number of use-
less events found.

2. Preliminary

2.1. Definitions

An event upon which a local predicate is evaluated as
true is defined as a predicate event. Leteji denote thej-th
predicate event occurred atPi. Event intervalIji is the set
of all events betweeneji andej+1i , includingeji but exclud-
ing ej+1i .1 We defineprecedence relationbetween event
intervals as follows.

Definition 1 The direct precedence relation (�d). Let Ixi
andIyj be two event intervals.Iyj �d Ixi if and only if (1)j = i andx = y + 1 or (2) there exists a message that is
sent from some event inIyj and is received by some event
in Ixi .

Definition 2 The precedence relation (denoted by�) is the
transitive closure of�d.

We say thatIyj immediately precedesIxi if Iyj �d Ixi ,
and thatIyj precedesIxi if Iyj � Ixi . A precedence graph
is a directed graph(I; E), whereI is a set of event inter-
vals, andhIxi ; Iyj i 2 E iff Ixi �d Iyj . Figure 1 (b) shows
the precedence graph corresponding to the sample execu-
tion run in Figure 1 (a).

2.2. Previous work

Netzer and Xu [14] showed that an event cannot be in
any consistent event set if and only if there is a zigzag path

1For completeness,I0i denotes the sequence of events betweenPi’s
first event (not necessarily a predicate event) ande1i .
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Figure 1. (a) Sample execution run of a four-
process system; (b) Precedence graph corre-
sponding to (a)

from this event to itself (called azigzag cycle). Formally,
a zigzag path exists fromepi to eqj iff there are messagesm1;m2; : : : ;mn (n � 1) such that (1)m1 is sent byPi af-
ter the occurrence ofepi , (2) if mr(1 � r < n) is received
by Pk, thenmr+1 is sent byPk in the same or later event
interval, and (3)mn is received byPj beforeeqj occurs.
The concept of zigzag cycles provides a theoretical basis for
identifying removable events. However, it is difficult to cap-
ture zigzag paths by means of any causality tracking scheme
such as vector clocks, since a zigzag path is not necessarily
a causal path. In the past, only certain types of zigzag paths
and thus only some sort of removable events could be ef-
fectively identified. In Chiou and Korfhage’s method [4],
only those eventseki for which9j; l : elj ! eki ^ eki ! el+1j
can be identified. Their method therefore deals with only
zigzag cycles that involve exactly two processes and two
messages. Given the sample execution shown in Figure 1
(a), their method can detect only useless evente11. Evente22,
although useless, is not detectable.

Baldoni et. al. [1] viewed the same problem from a dif-
ferent aspect. They showed that a predicate eventeki is re-
movable (impossible to be in any consistent event set) if
and only ifIki � Ik�1i , which is consistent with Netzer and
Xu’s result but focus on the relation between event intervals
rather than events. Their results motivated our research. In-
stead of identifying zigzag paths between predicate events,
our proposed method tracks precedence relation between
event intervals.

2.3. Theoretical basis and design issues

The idea behind our approach is that finding removable
events can be transformed to the problem of detecting cy-
cles in the precedence graph, as stated below. Each non-
checker process tracks all event intervals that immediately
precede its current one, and sends this information to the
checker process when the current event interval is com-
pleted. Based on information sent from non-checker pro-
cesses, the checker process constructs a precedence graph.



WhetherIki � Ik�1i for any two successive event intervalsIk�1i andIki can then be determined by checking the exis-
tence of a path fromIki to Ik�1i in the precedence graph.

However, when turning this conceptual result into a prac-
tical on-line detection algorithm, we may encounter some
difficulties. First, the checker process can construct onlya
subgraph of the complete precedence graph, which we de-
fine asconstructed graph.

Definition 3 A constructed graphGc = (Ic; Ec) is a sub-
graph of a precedence graphG = (I; E) in which the ver-
tices are partitioned into two disjoint setsR andC such that� for everyIxi 2 I andIyj 2 I, if hIyj ; Ixi i 2 Ec, thenIxi 2 C, and� for everyIxi 2 C andIyj 2 I, if hIyj ; Ixi i 2 E, thenIyj 2 Ic andhIyj ; Ixi i 2 Ec

Intuitively, an event interval is inC if all event intervals
immediately preceding it, if any, are either inC or inR. An
event interval is inR if it is not in C and it immediately
precedes at least one event interval inC.

Constructed graph offers only partial information about
precedence relation. For any two verticesIxi andIyj in a
constructed graph, we haveIyj � Ixi if there exists a path
from Iyj to Ixi , but the reverse implication does not hold.
Therefore, with a naive and straightforward algorithm de-
sign, we may not reach a conclusion until the execution of
the monitored program is completed, at which time the en-
tire precedence graph is obtained. We overcame this diffi-
culty by observing that the precedence relation is complete
for all vertices in a particular subgraph of the precedence
graph. This subgraph is defined asexplored graph.

Definition 4 An explored graphGe = (Ie; Ee) is a sub-
graph of a precedence graphG = (I; E) with the property
that for everyIxi 2 Ie andIyj 2 I, if hIyj ; Ixi i 2 E, thenIyj 2 Ie andhIyj ; Ixi i 2 Ee
Lemma 1 An explored graph is a constructed graph with
the property thatR = ;.
Theorem 1 Let Ixi andIyj be any two vertices in an ex-
plored graph. We haveIyj � Ixi iff there exists a path fromIyj to Ixi in the explored graph.

Proof: ((=) Obvious. (=)) Iyj � Ixi implies that there is
a path fromIyj to Ixi in the precedence graph. By the def-
inition of explored graph, all vertices on this path together
with all edges connecting them should also be in the ex-
plored graph. So the same path exists in the explored graph.2

The second difficulty is the potentially expensive space
and time cost. The constructed graph expands as new

nodes and edges are gathered and accumulated, demand-
ing a space size probably proportional to the execution time
of the monitored program. Also, path computation time
becomes longer as graph expands. Therefore, without an
effective and efficient way to prune the graph, only short-
execution-time program can be debugged without suffering
from performance degradation.

Note that we cannot discardIxi and associated incident
edges just becauseexi is found to be removable (or, non-
removable), sinceIxi may be a node on some other cycles.
We prune the constructed graphGc = (Ic; Ec) by remov-
ing any subgraphGe = (Ie; Ee) that is an explored graph
from it. The remaining graph is the induced subgraph ofGc on the vertex setIc � Ie. This pruning scheme is re-
peatedly performed to prevent the constructed graph from
growing unlimitedly. After a subgraph has been identified
as being an explored graph but before it is removed, we ex-
amine every event intervalIxi in it to see if there exists a
path fromIxi to Ix�1i . We claim that our graph-pruning
scheme is safe. That is, it neither causes non-useless events
to be wrongly identified as useless, nor does it hide any use-
less events from being detected. Detailed proof is given in
Section 3.4.

3. The proposed algorithm

Our algorithm consists of two modules. The first mod-
ule, cooperatively executed by non-checker and checker
processes, collects direct precedence relation information
and forms the constructed graph. The second module iden-
tifies useless predicate events by examining the constructed
graph, and prunes the graph by removing explored subgraph
that has been completely examined. These two modules are
not assumed to be executed in parallel: only one module
can be activated at any instant of time. We do not prescribe
any particular scheduling policy for them.

3.1. Collecting direct precedence information

Each non-checker process locally tracks direct prece-
dence relation resulted from the execution of the moni-
tored program. The checker process collects pieces of di-
rect precedence relation from all non-checker processes and
assemble them into a constructed graph. The operation per-
formed by each non-checker process is as follows (refer to
Figure 2).Pi uses integer variableCi to count the number of
predicate events detected atPi so far. An event interval (EI)
tuple hi; Cii, which uniquely identifiesPi’s current event
interval,ICii , is attached to every application message sent
by Pi. Pi uses set variableRi to hold all incoming EI tu-
ples. The contents ofRi thus correspond to event intervals
immediately precedingICii —EI tuplehj; yi is inRi only if
event intervalIyj immediately precedesICii . Pi concludes



Init Ri  fgCi  0
On sending a messagem

attachhi; Cii tom
On receiving an EI tuplehj; yiRi  Ri [ fhj; yig
On detecting a local predicate

sendfRi; i; Cig to the checker process as a debug messageRi  fhi; CiigCi  Ci + 1
Figure 2. Operations performed by non-
checker process Pi

the current event interval upon detecting a local predicate,
at which time it sendsfRi; i; Cig as a debug message to the
checker process. After that,Ri is reset tofhi; Ciig, indi-
cating thatICii is the only event interval currently known to
immediately precede the next one, andCi is then increased
by one.

3.2. Assembling constructed graph

Upon receiving a debug message, the checker process
invokes procedureupdategraph, as shown in Figure 3, to
update the constructed graph. The resulted graph is rep-
resented by a matrix,A. We denote the row ofA associ-
ated withIxi by A[Ixi ; �] and the column associated withIxi by A[�; Ixi ]. The rows and columns ofA are dynami-
cally added and deleted. Initially,A is a null matrix with no
columns and rows. Set variablescol itemsandrow items,
initially empty, are used to hold the sets of event intervals
currently contained among the columns and rows, respec-
tively.

Procedureupdategraphoperates as follows. Let the re-
ceived message befRi; i; xg. The procedure first adds a
new column,A[�; Ixi ], to matrixA. It then examines each
EI tuple hj; yi in Ri to see if it is necessary to add rowA[Iyj ; �] to A as well. The addition is not necessary ifA[Iyj ; �] already exists or once existed but has been dis-
carded (by our graph-pruning scheme, discussed later). In-
teger arraymaxdiscardedis used to prevent discarded row
items from being added again.maxdiscarded[j] records
the maximalt such that event intervalsI0j ; I1j ; : : : ; Itj all
have been discarded. Our graph-pruning scheme ensures
that an event interval will not be discarded if any event in-
terval preceding it has not yet been discarded. Soy >max discarded[j] means thatA[Iyj ; �] has not ever been
discarded.

It is not hard to see thatcol itemscorresponds to the
vertex setC of the constructed graph. Also, the set cor-

Init
max discarded[j] = �1 for all j
row items fg
col items fg

On receivingfRi; i; xg
add a new columnA[�; Ixi ] toA
col items col items[fIxi g
for each EI tuplehj; yi 2 Ri do

if y > max discarded[j] then
if Iyj 62 row itemsthen

add a new rowA[Iyj ; �] toA
row items row items[fIyj g

end ifA[Iyj ; Ixi ] 1
end if

end for

Figure 3. Procedure updategraph

responding to the vertex setR is row items� (col items\
row items).

3.3. Finding useless events and pruning the graph

The checker process invokes procedurefind removable
(Figure 4) to perform two tasks: to find and remove use-
less predicate events pending in event queues and to iden-
tify and remove explored subgraph from the constructed
graph. The first task is done by first computing the transi-
tive closure ofA and then checking whetherA[Ix+1i ; Ixi ] =1 for every Ixi in col items. This approach would take�(jcol itemsj2jrow itemsj) computation time. Alterna-
tively, we can determine whether the predicate event cor-
responding toIxi is removable by searching a path fromIx+1i to Ixi . We may setA[I 0 ; I] to 1 when a path fromI 0
to I is found during the search. This action gathers partial
transitivity information as the search progresses and thus
facilitates the searching.

While checking whether the predicate event correspond-
ing toIxi is removable, we also check whetherIxi is a part of
an explored graph. This can be done by checking whether
all Iyj in row items that precedeIxi are also incol items
(functionis exploredin Figure 4). SuchIxi is called an ex-
plored event interval. All explored event intervals found are
stored in set variableexplored, and will be deleted one by
one from the constructed graph.

3.4. Proof of safety

In this section, we shall prove that our graph-pruning
scheme neither causes non-useless events to be wrongly
identified as useless, nor does it hide any useless events
from being detected.



procedurefind removable
/* compute the transitive closure ofA */

for eachI 2 col itemsdo
for eachI0 2 row itemsdo

if A[I0 ; I] = 1 and I 2 row itemsthen
for eachI00 2 col itemsdo

if A[I; I00 ] = 1 thenA[I0 ; I00 ] 1
/* identify useless events and explored event intervals */

explored fg
for eachIxi 2 col itemsdo

if is explored(Ixi ) then explored explored[fIxi g
if Ix+1i 2 row itemsandA[Ix+1i ; Ixi ] = 1 then

removeex+1i fromQi if ex+1i exists
end for

/* discard explored event intervals */
for eachIxi 2exploreddo

removeA[Ixi ; �] andA[�; Ixi ] fromA
row items row items�fIxi g
col items col items�fIxi g
if x >maxdiscarded[i] then max discarded[i]  x

end for
end.

function is explored(I): Boolean
for eachI0 2 row itemssuch thatA[I0 ; I] = 1 do

if I0 62 col itemsthen returnfalse
end for
returntrue

end.

Figure 4. Procedure find removable

First observe that propertyA[Iyj ; Ixi ] = 1 =) Iyj � Ixi
holds before any event interval has ever been discarded.
Since each entryA[Iyj ; Ixi ] is either discarded or left un-
changed but not modified, this property still holds after the
first event interval is discarded. It also holds after succes-
sive removal of event intervals for the same reason. This
implies that no predicate event will be wrongly identified as
useless due to discarding explored event intervals.

To prove that the graph-pruning scheme does not hide
any useless events from being detected, we show that ifex+1i is useless, thenA[Ix+1i ; Ixi ] = 1 whenIxi is iden-
tified as explored. LetEn denote the set of event intervals
identified as explored in then-th invocation of procedure
find removable. Let Dn = E1 [ E2 [ � � � [ En denote
the set of event intervals that have ever been discarded from
the very beginning up to the end of then-th invocation of
procedurefind removable. The proof is divided into two
steps. First we show that ifex+1i is useless,Ixi 2 En im-
plies thatIx+1i 62 Dn�1. Then we show that ifIxi 2 En,
for any other event intervalIyj 62 Dn�1, Iyj � Ixi implies
thatA[Iyj ; Ixi ] = 1 whenIxi is identified as explored.

The following statements lead to the first step of the
proof. If we do not discard any explored event intervals,

the sufficient condition for identifying thatI is explored,
i.e., I 0

is in col items for all I 0
such thatA[I 0 ; I] = 1,

essentially implies that all event intervals precedingI are
in col items. This implication must be revised when we do
discard explored event intervals. In such cases, some event
intervals precedingI may be discarded beforeI is identi-
fied as explored. Therefore, the same sufficient condition
for identifying thatI is explored now implies that all event
intervals precedingI either are incol itemsor have been
discarded. The behavior of functionis exploredcan be de-
scribed as follows.

Theorem 2 I 2 En =) 8I 0 ; I 0 � I : I 0 2 col items_I 0 2 Dn�1
Theorem 3 8I; I 0 : I 0 � I :: I 2 En =) I 0 2 Em,
wherem � n.

Proof: For any event intervalI 0
that precedesI, we havefI 0g [ fI 00 jI 00 � I 0g � fI 00 jI 00 � Ig. By Theorem 2,I 2 En only if fI 00 jI 00 � Ig � col items[Dn�1 in then-

th invocation. This necessity implies thatfI 0g [ fI 00 jI 00 �I 0g � col items[Dn�1. Consequently, eitherI 0
will also

be identified as explored and discarded in the same invo-
cation, orI 0

has already been discarded. Thus we haveI 0 2 Em, wherem � n. 2
Corollary 1 8I; I 0 : I � I 0 ^ I 0 � I :: I 2 En ()I 0 2 En.

Corollary 2 8I; I 0 : I � I 0 ^ I 0 � I :: I 2 Dn ()I 0 2 Dn.

Corollary 1 indicates that ifex+1i is useless,Ix+1i has not
yet been discarded whenIxi is identified as explored. This
completes the first-step proof.

Next we present the second-step proof. All following
results hold for the execution period after the transitive clo-
sure ofA has been computed, but before any explored event
interval found is discarded. We define a sequence of event
intervalsfI1; I2; : : : ; Ing to be anevent interval chainifI1 �d I2; I2 �d I3; : : : ; andIn�1 �d In.

Lemma 2 For any event interval chainfI1; I2; : : : ; Img,
if I1 has not yet been discarded andfI2; I3; : : : ; Img �
col items, thenA[I1; Im] = 1 after the transitive closure ofA has been computed.

Proof: The proof is by induction onm. The claim triv-
ially holds form = 2. We assume that the claim holds
for m < k and consider the case ofm = k. LetfI1; I2; : : : ; Ikg be an event interval chain such thatI1 has
not yet been discarded andfI2; I3; : : : ; Ikg � col items.
Let Ii 2 fI2; I3; : : : ; Ikg be the last event interval that
was added tocol items. Just before the addition, we have



fI2; I3; : : : ; Ii�1g � col items. By the induction hypoth-
esis, this implies thatA[I1; Ii�1] = 1 at that time. Simi-
larly, we havefIi+1; Ii+2; : : : ; Ikg � col items. By Corol-
lary 2, Ii+1 had not been discarded at that time, sinceIi,
the event interval immediately precedingIi+1, is not even
received. By the induction hypothesis, this implies thatA[Ii+1; Ik] = 1 at that time. After the edge(Ii�1; Ii)
has been added to the graph, having computed the transi-
tive closure ofA ensures thatA[I 0 ; I] = 1 for all I 0

such
thatA[I 0 ; Ii�1] = 1 and for allI such thatA[Ii+1; I] = 1.
ThusA[I1; Ik] = 1 after the addition. It remains to be so
as long asI1 is not discarded andIk 2 col items. 2
Theorem 4 For everyI 2 col itemsand everyI 0

that has
not been discarded, ifI 0 � I andA[I 0 ; I] 6= 1, then there
must be someI 00

such thatA[I 00 ; I] = 1 andI 00
is not in

col items.

Proof: I 0 � I implies that there exists at least one event
interval chainfI1; I2; : : : ; Img (m � 2) such thatI 0 � I1
andIm � I. Consider any such chain. SinceI 0

has not
been discarded, by Lemma 2,A[I 0 ; I] 6= 1 implies that
there must be some event interval infI2; I3; : : : ; Im�1g
that is not incol items. Let s be the maximal index of such
event intervals. If we can show thatA[Is; Im] = 1, the
proof is done. Observe thatIs has not been discarded sinceIs is not even received. Also,fIs+1; Is+2; : : : ; Img �
col items. By Lemma 2, we then haveA[Is; Im] = 1. 2
Corollary 3 For everyI 2 col items, if there exists no
event intervalI 00

such thatA[I 00 ; I] = 1 and I 00 62
col items, then there exists noI 0

such thatI 0
has not been

discarded andI 0 � I ^A[I 0 ; I] 6= 1.

Theorem 5 For everyI 2 col items, if is explored(I) re-
turnstrue, then for everyI that has not been discarded, we
haveI 0 � I =) A[I 0 ; I] = 1.

Proof: For every event intervalI 2 col items, if
is explored(I) returns true, then there exists noI 00

such
thatA[I 00 ; I] = 1 andI 00 62 col items. By Corollary 3,
this implies that there exists noI 0

such thatI 0
has not

been discarded andI 0 � I ^ A[I 0 ; I] 6= 1, which in
turn implies that for everyI 0

that has not been discarded,I 0 � I =) A[I 0 ; I] = 1. 2
By Corollary 1 and Theorem 5, it is clear that ifex+1i

is useless, thenA[Ix+1i ; Ixi ] = 1 whenIxi is identified as
explored. Soex+1i will be detected before discardingIxi .

4. Performance evaluation

4.1. Time complexity analysis

Assuming that the time to add a column or row isO(1)
(which can be achieved if adding a column or row is in fact
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Figure 5. Scenario corresponding to worst-
case explored graph

adding a head of a linked list), the computation time of pro-
cedureupdategraphisO(jRij) for a single debug messagefRi; i; xg. For a constructed graphG = (V;E), the total
computation time for procedureupdategraph is thereforeO(jEj).

Procedurefind removablecontains mainly three inde-
pendent loops. The first loop, which computes the
transitive closure ofA, takes�(jcol itemsj2jrow itemsj)
computation time. If the computation time of check-
ing whether an element is in a given set is propor-
tional to the size of the set, functionis explored takesO(jcol itemsjjrow itemsj) time. So the second loop, which
identifies explored event intervals and useless predicate
events, takesO(jcol itemsj2jrow itemsj) computation time.
The third loop obviously takes less computing time. We
have thatfind removableA is of�(jcol itemsj2jrow itemsj)
time complexity.

The values ofjcol itemsj and jrow itemsj depend on
whether the constructed graph contains many small sub-
graphs that are explored graphs. If it does, every time
we execute procedurefind removable, we can hopefully re-
move some explored subgraphs from it and thus shrink sets
col itemsandrow items. On the other hand, if it does not,
our pruning scheme will not help in decreasingjcol itemsj
andjrow itemsj.

Suppose thatk event queues are non-empty, each of
which hasm events. The worst case we may encounter is
that all events ink � 1 out of thek event queues form an
explored graph that cannot be divided into smaller explored
subgraphs (see Figure 5). In this case, the maximal possi-
ble values ofjcol itemsj andjrow itemsj are both(k� 1)m,
resulting inO(k3m3) time complexity forfind removable.

The result obtained is for a single invocation of proce-
durefind removable. The overall execution time depends
on how frequently we execute the procedure. If we execute
it too often, the benefit we obtain from cutting off explored



subgraph may not compensate the execution time imposed
on. On the other hand, if we seldom invoke the procedure,
the execution time may be terrible when we indeed execute
it. The optimal solution cannot be obtained if we do not
know in advance what the constructed graph will be.

4.2. Simulation results

In this section, we evaluate the performance of our ap-
proach by simulation. We assume a system consisting of
ten processes. All processes but one randomly and inde-
pendently generate predicate events, and report event in-
tervals to the checker process in the order as they occur.
The time interval between two consecutive predicate events
is assumed to be an exponentially distributed random vari-
able with mean�1. Each process randomly and indepen-
dently sends messages, with destinations uniformly dis-
tributed over all processes other than the sender. Message
propagation delays and the time interval between two con-
secutive sending events are both assumed to be exponen-
tially distributed, with parameters�3 and�2, respectively.

We varied the values of�1, �2, and�3 to represent
various types of computation and communication patterns.
We computed the ratio of predicate events identified use-
less to the total. This is used as the metrics to compare
our approach with the two methods proposed by Chiou and
Korfhage, which are respectively denoted by C&K(A) and
C&K(B). The difference between C&K(A) and C&K(B) is
that the latter performs the same check repeatedly, rather
than just once, until no further useless events can be found.
Figures 6-9 show some representative results.
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Figure 6. Results with �1 = 15 and �3 = 5
Clearly, with a fixed�3, the ratio of useless predicate

events decreases as the ratio�1=�2 increases (Figures 6 and
7). This can be explained as follows. When�1=�2 < 1,
many processes do not send out any application message
between two consecutive predicate events, so zigzag cycles
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Figure 7. Results with �2 = 15 and �3 = 5
are unlikely to happen, and few useless events can be found.
On the other hand, when�1=�2 > 1, messages are likely to
be sent between two consecutive predicate events, implying
that zigzag cycles and thus useless events are more possible
to occur. Mean message propagation delays (�3) also have
impacts on the ratio of useless events. Generally, with a
fixed �1=�2 setting, the ratio of useless predicate events
decreases as�3 increases (Figures 8 and 9).

In all settings, our approach outperforms C&K(A) in
terms of the number of useless events found. The perfor-
mance of C&K(B) is between ours and C&K(A). When the
ratio of useless events is high, C&K(B) is a match for our
approach. But it degrades to C&K(A) when the ratio be-
comes low.

We also found that our graph-pruning technique does not
help much in shrinking the size ofA. The reason is that we
let one of all processes send messages but not report any
predicate event. As a result, there did exist a large subgraph
that cannot be divided into smaller explored subgraphs (i.e.,
the one shown in Figure 5). That graph cannot be con-
structed by the checker process and found to be explored,
since there is always one event interval absent.
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Figure 8. Results with �1 = 15 and �2 = 15
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Figure 9. Results with �1 = 15 and �2 = 5
5. Conclusions

We have proposed an approach that effectively precludes
useless events for global predicate detection, facilitating the
process of an independent on-line checking routine. To
identify more useless events than a simple causality-check
method can do, our method tracks and maintains the prece-
dence information of event intervals as a graph. To re-
duce the potentially expensive space and time cost as the
graph expands, we have proposed a safe scheme to prune
the graph. This scheme is safe in the sense that it neither
causes non-useless events to be wrongly identified as use-
less, nor does it hide any useless events from being detected.

Suppose thatk event queues are non-empty, each of
which hasm events. Our approach takesO(k3m3) com-
putation time, while Chiou and Korfhage’s method takesO(k2m2). Our method, however, does not necessarily in-
crease additional computation overhead on the checker pro-
cess, since the checker process is otherwise idle. The sim-
ulation result shows that our approach outperforms conven-
tional approaches in terms of the number of useless events
found.
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