Precluding Useless Events for On-Line Global Predicate Dettions

Li-Hsing Yen
Department of Computer Science and Information Engingerin
Chung Hua University
Hsinchu, Taiwan 30067, R.O.C.
Ihyen@chu.edu.tw

Abstract be examined to see if any combination of them can form a
consistent global state. The number of states examined is
Detecting global predicates is an important task in test- therefore reduced.
ing and debugging distributed programs. In this paper, A typical procedure toward this kind of predicate de-
we propose an approach that effectively precludes uselessection is as follows [3, 8, 9]. Consider a distributed sys-
events for global predicate detection, facilitating th@pr tem that consists of processes, labeleR,, P, ..., P,.
cess of an independent on-line checking routine. To identif All processes cooperatively maintain vector clocks [6, 12]
more useless events than a simple causality-check methodvhich are used to timestamp events. This timestamping
can do, our method tracks and maintains the precedencescheme possesses a desired property that for any two events
information of event intervals as a graph. To reduce the 4 andb, we can determine i& happens befor§l0] b (de-
potentially expensive space and time cost as the graph exnoted bya — b) by comparing their timestamps. Once an
pands, we propose an effective scheme to prune the graphevent upon which a local predicate is evaluatetras oc-
The performance of our method is analyzed and evaluatedcurs, the process sends in FIFO order the event’s identifica-
by simulations. The result shows that our approach outper- tion together with its timestamp to a dedicatétkckerpro-
forms conventional approaches in terms of the number ofcess [8, 3]. The checker process maintaire/ent queues,
useless events found. Q1,Q2, . ..,Qn, Where eacl®); is for storing events from
P;. Events in each queue are arranged in the order as they
occurred: the head event@f is the earliest predicate event
1. Introduction among other events occurredi.
The checker process performs two routines. The first
One important task in testing and debugging a distributed routine examines if the event set comprising all currentihea
program is to answer whether a given execution run of this events in each queue is consistent. The technique used in
program fulfills a particular property. Such a property is of this routine is to repeatedly find two causally related head
ten specified as a global predicate—a Boolean expressiorevents and remove the one that happened before the other
whose value depends on the state of multiple processes and/, 8]. Whenever no event queue is empty and the checker
perhaps, communication channels. Detecting global pred-cannot remove any head event, a consistent global predicate
icates involves identifying consistent global states [#j, is identified.
which predicates are to be evaluated. In general, the num- Events usually do not arrive at a constant rate, so it is
ber of consistent global states is exponential in the num-possible that some event queue grows lengthily while oth-
ber of processes [5]. Therefore an exhaustive search for allers drain. If any event queue is empty, the first routine must
system states, which is necessary for detecting a generalwait for all absent events before it can proceed. Checker’s
form predicate, will suffer from the combinatorial explo- second routine identifies and removes all events currently
sion problem. Many researchers circumvent this problem pending in queues that are evidently inconsistent withrothe
by placing restriction on the types of predicates. In par- not yet arrived events. Precludingeless eventsot only
ticular, they have considered global predicates that can bereduces space requirement on event queues, but also avoids
logically decomposed into sub-expressions, each of whichfurther process of these events by the first routine. This re-
is locally detectable by a single process [13, 11, 3, 8, 15, 9] moval does not impose additional computation overhead on
Such sub-predicates are called local predicates. Only lo-the checker process: while the first routine cannot progress
cal states upon which local predicates are satisfied have tdhe checker process can perform this routine rather than be-

ing idle. In this paper, we focus on the design of this routine
Suppose thak event queues are non-empty, each of
which hasm events. A naive approach might involve look-
ing at allm* possible sets consisting of one event from each
of the k event queues [4]. Chiou and Korfhage [4] pro- P,
posed an algorithm for finding removable events that has an
O(k*m?) time complexity. Their method, however, cannot
identify all useless events. Although the necessary and suf
ficient conditions for useless events have been formulated
[14, 1], as to the author’s knowledge, no practical algonith Figure 1. (a) Sample execution run of a four-
has been proposed. Our method exploits the result in [1], process system; (b) Precedence graph corre-
which established the theory of event intervals, and treats sponding to (a)
the problem of finding useless events as an on-line compu-
tation of a reachability matrix representing an event idaer
graph. We prevent unlimited expansion of the matrix by cut-
ting down obsolete rows and columns, saving both memory

space and execution time. The validity proof of our method .
P yp my,Ma, ..., my (n > 1) such that (1)n, is sent byP; af-

is provided. The simulation result shows that our approach : .)
b bp ter the occurrence off, (2) if m,.(1 < r < n) is received

outperforms conventional approaches in the number of use- ; !
Iesspevents found P by Py, thenm,., is sent byP; in the same or later event

interval, and (3)m,, is received byP; beforee‘; occurs.
The concept of zigzag cycles provides a theoretical basis fo

P

1

p

from this event to itself (called aigzag cycle Formally,
a zigzag path exists frore! to e iff there are messages

2. Preliminary identifying removable events. However, it is difficult tqpea
o ture zigzag paths by means of any causality tracking scheme
2.1. Definitions such as vector clocks, since a zigzag path is not necessarily

. .) a causal path. In the past, only certain types of zigzag paths
An event upon which a local predicate is evaluated as and thus only some sort of removable events could be ef-
trueis defined as a predicate event. k¢tdenote thej-th fectively identified. In Chiou and Korfhage’s method [4],
predicate event occurred &. Event intervalZ; is the set only those events! for which3j,1: ek — ek A el — eltl

of all events betweea] ande! "', includinge! but exclud- can be identified. Their method therefore deals with only
ing ef“.l We defineprecedence relatioetween event zigzag cycles that involve exactly two processes and two
intervals as follows. messages. Given the sample execution shown in Figure 1

.) . (a), their method can detect only useless evenEventes,
Definition 1 The direct precedence relatior). Let Z7 although useless, is not detectable.

"’.de.Jy be two event mtervaIsI;/ =d ,If if and only if (1) , Baldoni et. al. [1] viewed the same problem from a dif-

j =iandz =y + 1or(2) there exists a message that i fgrent aspect. They showed that a predicate expit re-

sent from some event iy and is received by some event ,,yapje (impossible to be in any consistent event set) if

inZ7. and only ifZ¥ < ZF~!, which is consistent with Netzer and

Definition 2 The precedence relation (denotedbyis the ~ Xu'S result but focus on the relation between event interval

rather than events. Their results motivated our reseanch. |

stead of identifying zigzag paths between predicate eyents
We say thatZ! immediately precede®’ if 7 <4 I7, our proposed method tracks precedence relation between

and thatZ} precede<; if 7/ < Z7. A precedence graph event intervals.

is a directed grapliZ, E), whereZ is a set of event inter-

vals, and(Z7, Z¥) € Eiff Z7 <4 I}. Figure 1 (b) shows 2 3. Theoretical basis and design issues
the precedence graph corresponding to the sample execu-

transitive closure ok.

tion run in Figure 1 (a). The idea behind our approach is that finding removable
] events can be transformed to the problem of detecting cy-
2.2. Previous work cles in the precedence graph, as stated below. Each non-

_ checker process tracks all event intervals that immediatel
Netzer and Xu [14] showed that an event cannot be in precede its current one, and sends this information to the
any consistent event set if and only if there is a zigzag pathchecker process when the current event interval is com-
LFor completenessz? denotes the sequence of events betwBgs pleted. Based on information sent from non-checker pro-
first event (not necessarily a predicate event) gnd cesses, the checker process constructs a precedence graph.

WhetherZ? < 7'~ for any two successive event intervals
Iffl andZ! can then be determined by checking the exis-
tence of a path frorE? to Iffl in the precedence graph.

However, when turning this conceptual result into a prac-
tical on-line detection algorithm, we may encounter some
difficulties. First, the checker process can construct anly
subgraph of the complete precedence graph, which we de
fine asconstructed graph

Definition 3 A constructed grapli. = (Z., E.) is a sub-
graph of a precedence graph= (Z, E) in which the ver-
tices are partitioned into two disjoint setsandC' such that

o foreveryZ? € 7 andI]y € T, if (IJ@.’,If) € E,., then
I¥ € C,and
o foreveryZ? € C andZ} € 7, if (Z/,7}) € E, then
7! € I, and(T},I}) € E.

Intuitively, an event interval is i@ if all event intervals
immediately preceding it, if any, are eitherdhor in R. An
event interval is inR if it is not in C' and it immediately
precedes at least one event intervalin

Constructed graph offers only partial information about
precedence relation. For any two vertiggsandZ; in a
constructed graph, we ha?¢ < Z7 if there exists a path
from Z¥ to 77, but the reverse implication does not hold.
Therefore, with a naive and straightforward algorithm de-
sign, we may not reach a conclusion until the execution of
the monitored program is completed, at which time the en-
tire precedence graph is obtained. We overcame this diffi-

culty by observing that the precedence relation is complete

for all vertices in a particular subgraph of the precedence
graph. This subgraph is definedelored graph

Definition 4 An explored graptG. = (Z, E.) is a sub-
graph of a precedence gragh= (Z, E) with the property
that for everyZ? € 7. andZ} € Z, if (Z},Z}) € E, then
T € 7. and(T}, I}) € E.

gt

Lemma 1 An explored graph is a constructed graph with
the property thafz = ().

Theorem 1 Let 77 andZ! be any two vertices in an ex-
plored graph. We ha\léj.’ < I7 iff there exists a path from
Ij’.’ to Z? in the explored graph.

Proof: (<) Obvious. &) I;f’ < I? implies that there is

a path fromI;.’ to Z7 in the precedence graph. By the def-
inition of explored graph, all vertices on this path togethe
with all edges connecting them should also be in the ex-

nodes and edges are gathered and accumulated, demand-
ing a space size probably proportional to the execution time
of the monitored program. Also, path computation time
becomes longer as graph expands. Therefore, without an
effective and efficient way to prune the graph, only short-
execution-time program can be debugged without suffering
from performance degradation.

Note that we cannot discaf’ and associated incident
edges just becaus€ is found to be removable (or, non-
removable), sinc&? may be a node on some other cycles.
We prune the constructed graph = (Z., E.) by remov-
ing any subgraplé’. = (Z., E.) that is an explored graph
from it. The remaining graph is the induced subgraph of
G. on the vertex seT. — Z.. This pruning scheme is re-
peatedly performed to prevent the constructed graph from
growing unlimitedly. After a subgraph has been identified
as being an explored graph but before it is removed, we ex-
amine every event intervdl? in it to see if there exists a
path fromZ? to Z;'. We claim that our graph-pruning
scheme is safe. That s, it neither causes non-uselessevent
to be wrongly identified as useless, nor does it hide any use-
less events from being detected. Detailed proof is given in
Section 3.4.

3. The proposed algorithm

Our algorithm consists of two modules. The first mod-
ule, cooperatively executed by non-checker and checker
processes, collects direct precedence relation infoomati
and forms the constructed graph. The second module iden-
tifies useless predicate events by examining the consttucte
graph, and prunes the graph by removing explored subgraph
that has been completely examined. These two modules are
not assumed to be executed in parallel: only one module
can be activated at any instant of time. We do not prescribe
any particular scheduling policy for them.

3.1. Collecting direct precedence information

Each non-checker process locally tracks direct prece-
dence relation resulted from the execution of the moni-
tored program. The checker process collects pieces of di-
rect precedence relation from all non-checker processks an
assemble them into a constructed graph. The operation per-
formed by each non-checker process is as follows (refer to
Figure 2).P; uses integer variablg; to count the number of
predicate events detectedRtso far. An event interval (El)
tuple (i, C;), which uniquely identifies?;’s current event
intervaI,Ifi, is attached to every application message sent

plored graph. So the same path exists in the explored graphby P;. P; uses set variabl®; to hold all incoming EI tu-

|
The second difficulty is the potentially expensive space

ples. The contents d®; thus correspond to event intervals
immediately precedin@ici—El tuple(j,y) isin R; only if

and time cost. The constructed graph expands as newevent intervalZ;f’ immediately precedééici. P; concludes

Init
Ci+0

On sending a message
attach(i, C;) tom

On receiving an El tupléj, y)
Ri < Ri U{(J,)}

On detecting a local predicate
send{R;, i, C; } to the checker process as a debug message
Ci«+—C;+1

Figure 2. Operations performed by non-
checker process P;

the current event interval upon detecting a local predjcate
atwhich time it send$R;, i, C; } as a debug message to the
checker process. After thaR; is reset to{(i, C;)}, indi-
cating thatZiO i is the only event interval currently known to
immediately precede the next one, aridis then increased
by one.

3.2. Assembling constructed graph

Upon receiving a debug message, the checker proces
invokes procedurepdategraph, as shown in Figure 3, to
update the constructed graph. The resulted graph is rep
resented by a matrixd. We denote the row ofl associ-
ated withZ? by A[Z7,*] and the column associated with
I7 by A[*,Z7]. The rows and columns od are dynami-
cally added and deleted. Initially is a null matrix with no
columns and rows. Set variablegl.itemsandrow_items
initially empty, are used to hold the sets of event intervals

currently contained among the columns and rows, respec-

tively.

Procedureipdategraphoperates as follows. Let the re-
ceived message bgR;,i,z}. The procedure first adds a
new column,A[*, Z?¥], to matrix A. It then examines each
El tuple (j,y) in R; to see if it is necessary to add row
A[ZY,%] to A as well. The addition is not necessary if
A[Z],] already exists or once existed but has been dis-
carded (by our graph-pruning scheme, discussed later). In
teger arraymaxdiscardedis used to prevent discarded row
items from being added agairmaxdiscardedj] records
the maximalt such that event intervalg?, 7}, ..., 7} all

Init
maxdiscardedj] = —1 for all j
row_items«+ {}
colitems«+ {}

Onreceiving{R;, i, z}
add a new columpi[, Z7] to A
col.items«+ col.itemsU{Z? }
for each El tuplej, y) € R; do
if y > maxdiscardedlj] then
if Z ¢ row_itemsthen
add a new rowA[Z?, «] to A
row_items«— row_itemsU{Z }
end if
AlZY,I7] + 1
end if
end for

Figure 3. Procedure updategraph

responding to the vertex sé&tis row_items— (colitemsn
row_itemg.

3.3. Finding useless events and pruning the graph

The checker process invokes procediinel removable
%Figure 4) to perform two tasks: to find and remove use-
ess predicate events pending in event queues and to iden-
tify and remove explored subgraph from the constructed
graph. The first task is done by first computing the transi-
tive closure of4 and then checking whethe{ Z* ' 77] =
1 for everyZ? in colitems This approach would take
O(|colLitemg?|row_itemg) computation time. Alterna-
tively, we can determine whether the predicate event cor-
responding taZ{ is removable by searching a path from
77+ to 7¥. We may setd[Z , 7] to 1 when a path fronT’
to 7 is found during the search. This action gathers partial
transitivity information as the search progresses and thus
facilitates the searching.

While checking whether the predicate event correspond-
ing toZ? is removable, we also check whettigris a part of
an explored graph. This can be done by checking whether
all Z¢ in row.itemsthat precedeZ? are also incol.items
(functionis_exploredin Figure 4). SuclL? is called an ex-
plored event interval. All explored event intervals foume a
stored in set variablexplored and will be deleted one by
one from the constructed graph.

have been discarded. Our graph-pruning scheme ensures

that an event interval will not be discarded if any event in-
terval preceding it has not yet been discarded. ySo
maz_discarded[j] means thatd[Z{,] has not ever been
discarded.

It is not hard to see thatol items corresponds to the
vertex setC' of the constructed graph. Also, the set cor-

3.4. Proof of safety

In this section, we shall prove that our graph-pruning
scheme neither causes non-useless events to be wrongly
identified as useless, nor does it hide any useless events
from being detected.

procedure find_removable
/* compute the transitive closure cf */
for eachZ € col_itemsdo
for eachZ’ € row_itemsdo
if A[I',I] = 1landZ € row_itemsthen
for eachZ” € col.itemsdo
if A[Z, 7 |=1thenA[Z , T]+ 1
/* identify useless events and explored event intervals */
explored— {}
for eachZ? € col.itemsdo
if is_exploredZ;’) then explored— exploredU{Z; }
if Z'+" € row_itemsand A[Z7 1", Z7] = 1 then
removee? t! from Q; if e7 ! exists
end for
/* discard explored event intervals */
for eachZy eexploreddo
removeA[Z], x] and A[, Z7] from A
row_items<— row_items—{Z7 }
colitems«+ col.items—{Z7}
if z >maxdiscardedi] then maxdiscardedi] + =
end for
end.

function is_exploredZ): Boolean
for eachZ’ € row_itemssuch thatd[Z ,Z] = 1 do
it 7' ¢ col_itemsthen returnfalse
end for
returntrue
end.

Figure 4. Procedure find_removable

First observe that property(Z, 77| = 1 = I} < I7

the sufficient condition for identifying thaf is explored,
i.e., Z is in colitemsfor all Z' such thatA[Z ,7] = 1,
essentially implies that all event intervals precedingre

in col_items This implication must be revised when we do
discard explored event intervals. In such cases, some event
intervals preceding@ may be discarded befofgis identi-

fied as explored. Therefore, the same sufficient condition
for identifying thatZ is explored now implies that all event
intervals preceding either are incolLitemsor have been
discarded. The behavior of functigmexploredcan be de-
scribed as follows.

Theorem27Z € E" = VI',7 < I : T € colitems
vI e D" !

Theorem3VZ,7 : 7 <7 =T € E" = I € E™,
wherem < n.

Proof: For any event interval that precedeg, we have
{T}U{T'|T" < T} C{Z'|T" < T}. By Theorem 2,

7 e Eronlyif {Z"|I" < I} C colitemsuD"~! in then-

th invocation. This necessity implies thgf } U {Z"' |7 <

7'} C colitemsuD" 1. Consequently, eithef will also

be identified as explored and discarded in the same invo-
cation, orZ has already been discarded. Thus we have
7' € E™, wherem < n. O

Corollaryl VZ,7 : T < I AT <7 1 € E" <
7 e E™

Corollary2 VI,7 : T < T AT < I =T € D" <
T e D",

holds before any event interval has ever been discarded. o ol _
Since each entry[Z!,77] is either discarded or left un- Corollary 1indicates thatif; ™ is useless/; ™" has not
changed but not modified, this property still holds after the Y&t been discarded wheff is identified as explored. This
first event interval is discarded. It also holds after succes COmPpletes the first-step proof. .
sive removal of event intervals for the same reason. This Next we present the second-step proof. All following
implies that no predicate event will be wrongly identified as "€Sults hold for the execution period after the transitiee c
useless due to discarding explored event intervals. sure ofA has been computed, but before any explored event

To prove that the araph-bruning scheme does not hideinterval found is discarded. We define a sequence of event
P grapn-p 9 intervals{Z,,Z,,...,Z,} to be anevent interval chainf

any useless events from being detected, we show that if
et is useless, thed[Z7™!,7?] = 1 whenZ? is iden- hi=al Iz <aTs,.. andTn-1 <4 In.

tified as explored. LeE™ denote the set of eventintervals | o nma 2 For any event interval chaifZ;, Z, Ty}
. g . . .)) e mJ
identified as explored in the-th invocation of procedure 7, has not yet been discarded afith, Zs, . . ., Zn} C

3 _ 1 2
findremovable Let D" = E U E”U--- U E" denote oy jtemg thenA[Z;,Z,,] = 1 after the transitive closure of
the set of event intervals that have ever been discarded fromA has been computed.

the very beginning up to the end of theth invocation of
procedurefind_-removable The proof is divided into two
steps. First we show thatif ™' is uselessZ? € E" im-
plies thatZ*' ¢ D"~'. Then we show that if¥ € E",

Proof: The proof is by induction omn. The claim triv-
ially holds form = 2. We assume that the claim holds
for m < k and consider the case ofh = k. Let
for any other eventintervaly ¢ D", 7¥ < I} implies {7, 7,,....7,} be an event interval chain such tiathas
thatA[Z}, 77] = 1 whenZ} is identified as explored. not yet been discarded afd,Zs, ..., Zx} C colitems
The following statements lead to the first step of the Let Z; € {Z,,7s,...,Z;} be the last event interval that
proof. If we do not discard any explored event intervals, was added t@ol_.items Just before the addition, we have

{Z>,Zs,...,7;_1} C colitems By the induction hypoth-
esis, this implies thatl[Z,,7;_;] = 1 at that time. Simi-
larly, we have{Z; 1,Z;12,...,Zt} C col.items By Corol-

lary 2,7;+1 had not been discarded at that time, sifige
the event interval immediately precedifig,;, is hot even

received. By the induction hypothesis, this implies that

AlZ;41,Zx] = 1 at that time. After the edg€Z;_1,7Z;)

has been added to the graph, having computed the transi-

tive closure of4 ensures thati[Z',Z] = 1 for all Z' such
thatA[Z',Z;_;] = 1 and for allZ such thatd[Z;,, 7] = 1.
Thus A[Z,,Z;] = 1 after the addition. It remains to be so
as long a¥; is not discarded andj;, € col.items O

Theorem 4 For everyZ e colitemsand everyZ that has
not been discarded, # < Z andA[Z , 7] # 1, then there
must be somé&" such thatd[Z",Z] = 1 andZ is not in
colitems

P

k

Py

P, 7—A—A—A
P

1

Figure 5. Scenario corresponding to worst-
case explored graph

Proof: Z < Z implies that there exists at least one event adding a head of a linked list), the computation time of pro-

interval chain{Z,,Z,, ..., Z,,} (m > 2) such thatZ' = 7,
andZ,, = Z. Consider any such chain. Singe has not
been discarded, by Lemma 2[Z',Z] # 1 implies that
there must be some event interval {#-,7Zs, ..., Zn_1}
that is not incol_items Let s be the maximal index of such
event intervals. If we can show thal{Z;,7,,] = 1, the
proof is done. Observe that has not been discarded since
T is not even received. AlSO{Zs11,Zst2,.--,Zm} C
colitems By Lemma 2, we then havé[Z,7Z,,] = 1. O

Corollary 3 For everyZ € colitems if there exists no
event intervalZ’ such thatA[Z',7] = 1 andZ ¢
col_items then there exists n® such thatZ' has not been
discarded and@’ < Z A A[Z, 7] # 1.

Theorem 5 For everyZ € col.items if is_exploredZ) re-
turnstrue, then for everyZ that has not been discarded, we
havel <7 = A[Z 7] =1.

Proof: For every event intervall € colitems if
is_exploredZ) returns true, then there exists io such
that A[Z",7] = 1 andZ" ¢ colitems By Corollary 3,
this implies that there exists N6 such thatZ has not
been discarded andi < Z A A[Z,Z] # 1, which in
turn implies that for every’ that has not been discarded,
7T <T= AT ,7]=1. O

By Corollary 1 and Theorem 5, it is clear thatef ™'
is useless, thed[Z7 !, 77] = 1 whenZ? is identified as
explored. S&?*" will be detected before discardidg .

4. Performance evaluation
4.1. Time complexity analysis

Assuming that the time to add a column or row(Jél)

cedureupdategraphis O(|R;|) for a single debug message
{Ri,i,z}. For a constructed grapgil = (V, E), the total
computation time for procedungpdategraphis therefore
O(E))-

Procedurefind_removablecontains mainly three inde-
pendent loops. The first loop, which computes the
transitive closure of4, takes©(|colitemg?|row_itemg)
computation time. If the computation time of check-
ing whether an element is in a given set is propor-
tional to the size of the set, functiois_explored takes
O(|col_itemg|row_itemg) time. So the second loop, which
identifies explored event intervals and useless predicate
events, take® (|col_itemg? row_itemg) computation time.
The third loop obviously takes less computing time. We
have thafind_removableA is of © (|col.itemg? [row_items)
time complexity.

The values of|colitemg and |row.itemg depend on
whether the constructed graph contains many small sub-
graphs that are explored graphs. If it does, every time
we execute procedufand removablewe can hopefully re-
move some explored subgraphs from it and thus shrink sets
colLitemsandrow_items On the other hand, if it does not,
our pruning scheme will not help in decreasjogl.itemg
and|row_itemsg.

Suppose thak event queues are non-empty, each of
which hasm events. The worst case we may encounter is
that all events ik — 1 out of thek event queues form an
explored graph that cannot be divided into smaller explored
subgraphs (see Figure 5). In this case, the maximal possi-
ble values ofcol_itemg and|row_itemg are both(k — 1)m,
resulting inO(k*m3) time complexity forfind_removable

The result obtained is for a single invocation of proce-
durefind_-removable The overall execution time depends
on how frequently we execute the procedure. If we execute

(which can be achieved if adding a column or row is in fact it too often, the benefit we obtain from cutting off explored

subgraph may not compensate the execution time imposedg 80%

X :) 3
on. On the other hand, if we seldom invoke the procedure, § 70%
the execution time may be terrible when we indeed execute o 60% P7Q///o
it. The optimal solution cannot be obtained if we do not § 50% —— C&K(A)
know in advance what the constructed graph will be. o 40% 7 —4— C&K(B)
g 30% Y —0— Ours
. . o
4.2. Simulation results o 20% S
2 10%
. . o 0% | | L |
In this section, we evaluate the performance of our ap- 5 10 15 20 25 30

proach by simulation. We assume a system consisting of
ten processes. All processes but one randomly and inde-
pendently generate predicate events, and report event in-
tervals to the checker process in the order as they occur.
The time interval between two consecutive predicate events
is assumed to be an exponentially distributed random vari-
able with meam;. Each process randomly and indepen-
dently sends messages, with destinations uniformly dis- . .) .
tributed over all processes other than the sender. Messag € se_nt between two consecutive predicate events, |mpIy|_ng

. oo at zigzag cycles and thus useless events are more possible
propagation delays and the time interval between two con-

secutive sending events are both assumed to be exponerﬁ%oggg‘ oh:iﬁg ?;?;Si?igéfegzgzeggtgela(gégn(ielf;;Iha\\//v?th a
tially distributed, with parameters; andas, respectively. P : Y

We varied the values ofi, s, andas to represent fixed ay /as se.tting, the rat_io of useless predicate events
various types of computation and communication patterns.decre""Ses as; increases (Figures 8 and 9).
We computed the ratio of predicate events identified use- I all settings, our approach outperforms C&K(A) in
less to the total. This is used as the metrics to compareterms of the number of useless events found. The perfor-
our approach with the two methods proposed by Chiou andmance of C&K(B) is between ours and C&K(A). When the
Korfhage, which are respectively denoted by C&K(A) and ratio of useless events is high, C&K(B) is a match for our
C&K(B). The difference between C&K(A) and C&K(B) is approach. But it degrades to C&K(A) when the ratio be-
that the latter performs the same check repeatedly, rathe€Omes low.
than just once, until no further useless events can be found. We also found that our graph-pruning technique does not
Figures 6-9 show some representative results. help much in shrinking the size of. The reason is that we
let one of all processes send messages but not report any
predicate event. As a result, there did exist a large sulbgrap

Mean time interval between two predicate events

Figure 7. Results with «a; =15and a3 =5

are unlikely to happen, and few useless events can be found.
On the other hand, when, /as > 1, messages are likely to

80% Q\ that cannot be divided into smaller explored subgraphs (i.e
70% the one shown in Figure 5). That graph cannot be con-
60% structed by the checker process and found to be explored,
50% \ —— C&K(A) since there is always one event interval absent.

40% i\ﬂ —4— C&K(B)
30% ——Qurs
10% \\kﬂ

| | |

0, 1
0% 5 10 15 20 25 30

Ratio of useless events (%)

40% I
0,
30% \\m\ ——C&K(A)

A
20% —4— C&K(B)
) ——Ours

Mean time interval between two sending events

10%

O% 1 1 1 I
5 10 15 20 25 30

Ratio of useless events (%)

Figure 6. Results with «; =15and a3 =5
Mean message propagation delay
Clearly, with a fixedas, the ratio of useless predicate
events decreases as the ratig a increases (Figures 6 and
7). This can be explained as follows. When/a» < 1,
many processes do not send out any application message
between two consecutive predicate events, so zigzag cycles

Figure 8. Results with oy = 15and a; = 15

80% f\

70%
60%
50%
40%
30%
20%
10%

0% ‘

—*— C&K(A)
—— C&K(B)
—4—QOurs

Y\
o
RN

Ratio of useless events (%)

Mean message propagation delay

Figure 9. Results with a3 =15and as =5

5. Conclusions

We have proposed an approach that effectively precludes

useless events for global predicate detection, facitigiine

process of an independent on-line checking routine. To
identify more useless events than a simple causality-check

(4]

(5]

(6]

H.-K. Chiou and W. Korfhage. Enhancing distributed even
predicate detection algorithmdEEE Trans. Parallel Dis-
trib. Syst, 7(7):673-676, July 1996.

R. Cooper and K. Marzullo. Consistent detection of globa
predicatesProceedings of the ACM/ONR Workshop on Par-
allel and Distributed Debugging, ACM SIGPLAN Notices
26(12):167-174, December 1991.

J. Fidge. Timestamps in message-passing systems #at pr
serve the partial ordering. IRroceedings of the 11th Aus-
tralian Computer Science Conferengmages 5666, Febru-
ary 1988.

[7] V. K. Garg. Some optimal algorithms for decomposed par-

[8] V. K. Garg and B. Waldecker.

tially ordered sets. Inform. Process. Lett.44(1):39-43,
November 1992.

Detection of weak unsta-
ble predicates in distributed programiBEEE Trans. Parallel
Distrib. Syst, 5(1):299-307, March 1994.

[9] V. K. Garg and B. Waldecker. Detection of strong unsta-

[10]

[11]

method can do, our method tracks and maintains the prece{12]

dence information of event intervals as a graph. To re-

duce the potentially expensive space and time cost as the
graph expands, we have proposed a safe scheme to prune
the graph. This scheme is safe in the sense that it neithe
causes non-useless events to be wrongly identified as use-
less, nor does it hide any useless events from being detected
Suppose thak event queues are non-empty, each of [14]

which hasm events. Our approach také¥k*m?3) com-

putation time, while Chiou and Korfhage’s method takes

O(k?>m?). Our method, however, does not necessarily in- [15]
crease additional computation overhead on the checker pro-
cess, since the checker process is otherwise idle. The sim-

ulation result shows that our approach outperforms conven-

tional approaches in terms of the number of useless events

found.

References

[1] R. Baldoni, J.-M. Helary, and M. Raynal.

Computing 1996.

[2] K. M. Chandy and L. Lamport. Distributed snapshots: De-

termining global states of distributed systerd§CM Trans.
Comput. Syst3(1):63-75, February 1985.

[3] H.-K. Chiou and W. Korfhage. Efficient global event predi
cate detection. IRroceedings of the 14th International Con-
ference on Distributed Computing Systepeages 642—649,

June 1994.

About state
recording in asynchronous computations. Rroceedings
of the 15th ACM Symposium on Principles of Distributed

ble predicates in distributed programiBEE Trans. Parallel
Distrib. Syst, 7(12):1323-1333, December 1996.

L. Lamport. Time, clocks, and the ordering of events in a
distributed systemComm. ACM21(7):538-565, July 1978.
H. F. Li and B. Dash. Detection of safety violations irsdi
tributed systems. IRroceedings of 1992 International Con-
ference on Parallel and Distributed Systeipages 275-282,
1992.

F. Mattern. Virtual time and global states of distribdt
systems. In M. C. et al., editoRroceedings of the Inter-
national Workshop on Parallel and Distributed Algorithms
pages 215-226, North-Holland, 1989. Elsevier Science.

B. P. Miller and J.-D. Choi. Breakpoints and halting iis-d
tributed programs. IfProceedings of the 8th International
Conference on Distributed Computing Systepzges 316—
323, June 1988.

R. H. B. Netzer and J. Xu. Necessary and sufficient condi-
tions for consistent global snapshot&EE Trans. Parallel
Distrib. Syst, 6(2):165-169, February 1995.

S. Venkatesan and B. Dathan. Testing and debugging dis-
tributed programs using global predicate$EEE Trans-
actions on Software Engineering1(2):163-177, February
1995.

